Analog Electronics, Diode, Electronics

PN Junction Diode, its Characteristics and Applications

PN junction Diode play vital role in our electronic fields, because of their unique property (current flows in only one direction) they are used in many electronic or electrical circuitry like rectifiers, switches, clippers, clampers, voltage multipliers, In this post of PN Junction Diode, its Characteristics and Application we will learn about what is a PN Junction Diode and how its working and their different modes of operation and I am sure this article will help you a lot to understand your basic concepts.

After completing this article you will be able:

  • To Understand the PN Junction Diode.
  • To Understand the Working of PN Junction Diode.
  • To Understand the Effect of Forward Bias and Reverse Bias on PN Junction Diode.
  • To Understand the V-I Characteristics of PN Junction Diode.
  • To Understand the Practical Applications of PN Junction Diode.

PN Junction Diode

Diode is a simple two-terminal semiconductor device, commonly known as PN junction device which is made from a small piece of semiconductor material, usually, silicon, in which half is doped as a P region and half is doped as an N region with a PN junction and depletion region in between.

  • The p region is called the anode and is connected to a positive terminal of a battery.
  • The n-type is called the cathode and is connected to the second terminal of a battery.

The basic diode structure and symbol of PN Junction Diode is shown in Figure.

Construction of PN junction Diode

If we connect positive terminal of the battery to the P-type Material and Negative terminal of the battery to the N-type of material then it is called Forward Bias Configuration of Diode.

If we Connect Negative Terminal Battery to the P-type of Material and Positive terminal of Battery to the N-type Material then it is Called Reverse Bias configuration of Diode.

clear up to this? So let’s go to the details:

 

The forward bias of PN Junction Diode:

Forward bias is the condition that allows current through the PN junction Diode. The voltage source is connected in such a way that it produces a Forward Bias Diode. This external bias voltage is designated as VBIAS. The resistor limits the forward current to a value that will not damage the diode.

  • Note that the -ve side of VBIAS is connected to the n-region of the diode and the +ve side is connected to the p-region. This is one requirement for forward bias.
  • A second requirement is that the bias voltage, VBIAS, must be greater than the barrier potential.
Forward bias of PN junction diode
The Forward bias of PN junction diode ( +ve terminal of a battery to P-type & -ve terminal of a battery to N-type)

 

So Now what is Barrier Potential of PN Junction Diode?

it’s simple?

A Barrier Potential is the internal potential (voltage) of a particular material in case of Silicon it is 0.7v and in case of Germanium, it is 0.3v. It means when we forward bias the PN junction diode it should cross the voltage above than 0.7 for silicon and 0.3V for germanium.

As we know the N-type material is consist of Electrons and the P-type material is consist of Holes.

A fundamental picture of what happens when a PN junction diode is forward-biased is shown below. Because like charges repel, the negative side of the VBIAS “pushes” the free electrons, which are the majority carriers in the N-region, toward the PN junction. This flow of free electrons is called electron current. Now the VBIAS imparts sufficient energy to the free electrons for them to overcome the barrier potential which is 0.7V (Silicon) of the depletion region and move on through into the p region.

Once they reach in the P-region, these conduction electrons have lost enough energy to immediately combine with holes in the valence band.

Barrier potential of PN junction Diode
Barrier Potential as you can see

Now, the electrons are in the valence band in the P-region, simply because they have lost too much energy overcoming the barrier potential to remain in the conduction band.

Since unlike charges attract, the positive side of the VBIS attracts the valence electrons toward the left end of the P-region. The holes in the P-region provide the medium for these valence electrons to move through the p region. The valence electrons move from one hole to the next hole toward the left. The holes, which are the majority carriers in the p region, effectively (not actually) move to the right toward the junction, as you can see in Figure. This effective flow of holes is the hole current. You can also view that the hole current as being created by the flow of valence electrons through the p region, with the holes providing the only means for these electrons to flow.

As the electrons flow out of the p region through the positive side of the bias-voltage source, they leave holes behind in the p region; at the same time, these electrons become conduction electrons in the metal conductor.

As we Know that the conduction band in a conductor overlaps the valence band so that it takes much less energy for an electron to be a free electron in a conductor than in a semiconductor and that metallic conductors do not have holes in their structure. There is a continuous availability of holes effectively moving toward the PN junction to combine with the continuous stream of electrons as they come across the junction into the p region.

That was quite tough

Now Let Us Discuss

The Effect of Forward Bias on the Depletion Region of PN junction Diode:

As more electrons flow into the depletion region, the number of +ve ions is reduced. As more holes effectively flow into the depletion region on the opposite side of the PN junction Diode, the number of -ve ions is reduced. This reduction in +ve and -ve ions during forward bias causes the depletion region to narrow. As shown below in the figure.

Effect on Depletion region of PN junction diode
Effect on Depletion region of PN junction diode

An electric field between the +ve and -ve ions in the depletion region on either side of the junction creates an “energy hill” that prevents free electrons from diffusing across the junction at equilibrium. This is known as the barrier potential.

When forward bias is applied, the free electrons are provided with enough energy from the VBIAS to overcome the barrier potential and effectively “climb the energy hill” and cross the depletion region. The energy that the electrons require in order to pass through the depletion region is equal (=) to the barrier potential.

In other words, the electrons give up an amount of energy = the barrier potential when they cross the depletion region. This energy loss results in a voltage drop across the PN junction equal to the barrier potential (0.7 V), the additional small voltage drop occurs across the p-region and n-region due to the internal resistance of the material. For doped semi-conductive material, this resistance called the dynamic resistance, this is very small and can be neglected.

Reverse Bias of PN Junction Diode:

Reverse bias is the condition that essentially prevents current through the PN junction diode. As mentioned above if we connect –ve terminal of the battery to P-type material and +ve Terminal of Battery to N-type material this lead to the diode in Reverse Bias. note that the depletion region is shown much wider than in forward bias or equilibrium.

A diode connected for reverse bias. A limiting resistor is shown although it is not important in reverse bias because there is essentially no current.

Reverse Bias of PN junction Diode
Reverse Bias of PN junction Diode ( -ve terminal of a battery is connected to P-type & +ve terminal of a battery to N-type)

An illustration of what happens when a PN junction diode is reverse-biased is shown in below. Because unlike charges attract, the +ve side of the bias-voltage source “pulls” the free electrons, which are the majority carriers in the n-region, away from the PN junction. As the electrons flow toward the +ve side of the voltage source, additional +ve ions are created. This results in an increasing of the depletion region and a depletion of majority carriers.

effect on Depletion layer of PN junction Diode in reverse bias
effect on Depletion layer of PN junction Diode in reverse bias

In the p-type region, electrons from the -ve side of the voltage source enter as valence electrons and move from hole to hole toward the depletion region where they create additional -ve ions. This results in an increase of the depletion region and a depletion of majority carriers. The flow of valence electrons can be viewed as holes being “pulled” toward the +ve side. The initial flow of charge carriers is transitional and remain for only a very short time after the reverse-bias voltage is applied. As the depletion region widens, the availability of majority carriers decreases. As more of the n- region and p-regions become depleted of majority carriers, the electric field between the +ve and -ve ions increases in strength until the potential across the depletion region equals the bias voltage, VBIAS. At this point, the transition current essentially ceases except for a very small reverse current that can usually neglect.

this is an important part

V-I CHARACTERISTIC OF A PN junction Diode:

As you have learned, forward bias produces the current through a PN junction diode and reverse bias essentially prevents current, except for a negligible reverse current. Reverse bias prevents current as long as the reverse-bias voltage does not equal or exceed the breakdown voltage of the junction. Now we will examine the relationship between the voltage and the current in a diode on a graphical basis.

Step#01

Effect of Forward Bias on V-I Characteristics on PN Junction Diode

When a forward-bias voltage is applied across a diode, there is current. This current is called the forward current and is designated IF. The figure below illustrates what happens as the forward-bias voltage is increased positively from 0 V. The resistor is used to limit the forward current to a value that will not overheat the diode and cause damage. With 0 V across the diode, there is no forward current. As you gradually increase the forward-bias voltage, the forward current and the voltage across the PN junction diode gradually increase, as shown in Figure given below. A portion of the forward-bias voltage is dropped across the limiting resistor.

forward current of PN junction Diode

When the forward-bias voltage is increased to a value where the voltage across the diode reaches approximately 0.7 V (barrier potential), the forward current begins to increase rapidly, as illustrated in Figure given below. As you continue to increase the forward-bias voltage, the current continues to increase very rapidly, but the voltage across the diode increases only gradually above 0.7 V. This small increase in the diode voltage above the barrier potential is due to the voltage drop across the internal dynamic resistance of the semiconductive material.

V-I characteristics of PN junction Diode
V-I CHARACTERISTIC OF A PN junction DIODE in forward bias

Step#02

Effect of Reverse Bias on V-I Characteristics on PN Junction Diode

V-I Characteristic for Reverse Bias of PN junction Diode:

When a reverse-bias voltage is applied across a PN junction diode, there is only an extremely small reverse current (IR) through the PN junction. With 0V across the diode, there is no reverse current. As you bit by bit increase the reverse-bias voltage, there’s an awfully little reverse current and therefore the voltage across the diode will increase.

once the applied bias voltage is increased to a value where the reverse voltage across the diode (VR) reaches to the breakdown value of diode which is (VBR), the reverse current begins to increase rapidly. As you still increase the bias voltage, the present continues to extend very rapidly, but the voltage across the diode increases very little above VBR. Breakdown, with exceptions, is not a normal mode of operation for most PN junction devices.

reverse bias characteristic of PN junction Diode
reverse bias characteristic of PN junction Diode

Step#03

Complete V-I Characteristics on PN Junction Diode

V-I characteristic curve of a PN junction Diode
V-I characteristic curve of a PN junction Diode

Combine the curves for both forward bias and reverse bias, and you have the complete V-I characteristic curve for a PN junction diode, as shown in Figure give below.

Want to see Video about Diode Working? click below.

Applications of PN Junction Diode:

  1. PN Junction Diodes are mostly used for rectification (Alternative Current to Pulsating DC).
  2. They are used as clipper to clip the portion of AC.
  3. They are used as clamper to change the reference voltage.
  4. They are used as switches in many electronic circuitry.
  5. They are used in Voltage Multipliers to increase the output voltage.
  6. They are used in power supplies.

There are Many different types of PN Junction Diode, and we have covered all of them check out the  working of different types of diodes:

  1. What is Zener_Diode – Working and Applications of Zener
  2. What is LED- Working and Applications of LED
  3. What is PhotoDiode? Working and Practical Applications of PhotoDiode
  4. What is Tunnel_Diode – Definition, Working, Characteristics & Applications
  5. What is Varactor_Diode, operations and Practical Applications

This is all about PN Junction Diode Working, Operations, and its V-I Characteristics if you like our article or you think you have learned from this PN Junction Diode, its V-I Characteristics please share and comment below. Thanks and Stay connected with Studentsheart.com

2 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *